Intracellular ascorbic acid enhances the DNA single-strand breakage and toxicity induced by peroxynitrite in U937 cells.

نویسندگان

  • A Guidarelli
  • R De Sanctis
  • B Cellini
  • M Fiorani
  • M Dachà
  • O Cantoni
چکیده

A well-established protocol to increase the intracellular content of ascorbic acid was used to investigate the effects of the vitamin on DNA single-strand breakage and toxicity mediated by authentic peroxynitrite (ONOO(-)) in U937 cells. This protocol involved exposure for 60 min to 100 microM dehydroascorbic acid, which was taken up by the cells and converted into ascorbic acid via a GSH-independent mechanism. At the time of exposure to ONOO(-), which was performed in fresh saline immediately after loading with dehydroascorbic acid, the vitamin present in the cells was all in its reduced form. It was found that, in cells that are otherwise ascorbate-deficient, an increase in their ascorbic acid content does not prevent, but rather enhances, the DNA-damaging and lethal responses mediated by exogenous ONOO(-). These results therefore suggest that acute supplementation of ascorbic acid can be detrimental for individuals with pathologies associated with a decrease in ascorbic acid and in which ONOO(-) is known to promote deleterious effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca2+-Independent Mechanism

Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mi...

متن کامل

U937 cell necrosis mediated by peroxynitrite is not caused by depletion of ATP and is prevented by arachidonate via an ATP-dependent mechanism.

Exposure of U937 cells to an otherwise nontoxic concentration of peroxynitrite promotes a rapid necrotic response in the presence of pharmacological inhibitors of phospholipase A2. A 12-fold higher concentration of the oxidant, in the absence of additional treatments, caused remarkably greater DNA single-strand breakage, delayed formation of H2O2, and depletion of reduced glutathione but an ide...

متن کامل

Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide.

A short-term pre-exposure to dehydroascorbic acid (DHA) promotes U937 cell death upon exposure to otherwise non-toxic levels of peroxynitrite (ONOO-). Toxicity is mediated by a saturable mechanism and cell death takes place as a consequence of mitochondrial permeability transition. The following lines of evidence are consistent with the notion that the enhancing effects of DHA were related to m...

متن کامل

Nitrite enhances neutrophil-induced DNA strand breakage in pulmonary epithelial cells by inhibition of myeloperoxidase.

Chronic inhalation of environmental particles is associated with pulmonary carcinogenesis. Although the mechanism has not yet been fully elucidated, influx of inflammatory cells, including neutrophils, is suggested to play a major role in this process. Typically, in the particle-exposed lung, influx of neutrophils is accompanied by an accumulation of nitrite. Previous studies indicated that nit...

متن کامل

Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity.

Peroxynitrite is a cytotoxic oxidant produced during shock, ischemia reperfusion, and inflammation. The cellular events mediating the cytotoxic effect of peroxynitrite include activation of poly(ADP-ribose) synthetase, inhibition of mitochondrial respiration, and activation of caspase-3. The aim of the present study was to investigate the role of intracellular calcium mobilization in the necrot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 356 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001